Chenies School

How we teach calculations:
Calculation Policy for Mathematics

KS1 and KS2

About Our Calculation Policy

The following calculation policy has been devised to meet requirements of the National Curriculum for the teaching and learning of mathematics, and is also designed to give pupils a consistent and smooth progression of learning in calculations across the school. Please note that early learning in number and calculation in Reception is designed to build on progressively from the content and methods established in the Early Years Foundation Stage, (see our separate EYFs Calculation Policy).

Age stage expectations

The calculation policy is organised according to age stage expectations as set out in the National Curriculum, it is important that children have really got to grips with the expectation and explored it thoroughly before they move on. It may be that they are working at a lower stage until they are secure enough to move on.

Providing a context for calculation:

It is important that any type of calculation is given a real life context or problem solving approach to help build children's understanding of the purpose of calculation, and to help them recognise when to use certain operations and methods when faced with problems. This must be a priority within calculation lessons.

Choosing a calculation method:

Children need to be taught and encouraged to use the following processes in deciding what approach they will take to a calculation, to ensure they select the most appropriate method for the numbers involved:

To work out a tricky calculation:
Approximate,
Calculate,
Check it!

Year 1 Add with numbers up to 20

Use numbered number lines to add, by counting on in ones. Encourage children to start with the larger number and count on.

Children should:

- Have access to a wide range of counting equipment, everyday objects, number tracks and number lines, and be shown numbers in different con- texts.
- Read and write the addition (+) and equals (=) signs within number sentences.
- Interpret addition number sentences and solve missing box problems, using concrete objects and number line addition to solve them: $8+3=\square \quad 15+4=\square \quad 5+3+1=\square \quad \square+\square=6$

This builds on from prior learning of adding by combining two sets of objects into one group (5 cubes and 3 cubes) in Early Years.

Bead strings or bead bars can be used to illustrate addition including bridging through ten by counting on 2 then counting on 3 .
$8+5$

Key vocabulary: add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line

Key skills for addition at Y1:

- Read and write numbers to 100 in numerals, incl. 1-20 in words
- Recall bonds to 10 and 20 , and addition facts within 20
- Count to and across 100
- Count in multiples of 12,5 and 10
- Solve simple 1-step problems involving addition, using objects, number lines and pictorial representations.

Video clips: Using a range of equipment and strategies to reinforce addition statements /bonds to 10
addition and place value involving 2-digit numbers, then establish more formal methods.

To support understanding, pupils may physically make and carry out the calculation with Dienes Base 10 apparatus or place value counters, then compare their practical version to the written form, to help them to build an understanding of it.

> Key vocabulary: add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, sum, tens, ones, partition, addition, column, tens boundary

Key skills for addition at Y2:

- Add a 2-digit number and ones (e.g. $27+6$)
- Add a 2-digit number and tens (e.g. $23+40$)
- Add pairs of 2-digit numbers (e.g. $35+47$)
- Add three single-digit numbers (e.g. $5+9+7$)
- \quad Show that adding can be done in any order (the commutative law).
- Recall bonds to 20 and bonds of tens to 100 ($30+70$ etc.)
- Count in steps of 2,3 and 5 and count in tens from any number.
- Understand the place value of 2-digit numbers (tens and ones)
- Compare and order numbers to 100 using < > and = signs.
- Read and write numbers to at least 100 in numerals and words.
- Solve problems with addition, using concrete objects, pictorial representations, involving numbers, quantities and measures, and applying mental and written methods.

Year 3 Add numbers with up to 3-digits

Introduce the expanded column addition method:

In order to carry out this method of addition:

- Children need to recognise the value of the hundreds, tens and ones without recording the partitioning.

Move to the compact column addition method, with exchanging (carrying).

Children who are very secure and confident with 3-digit expanded column addition should be moved onto the compact column addition method, being introduced to 'exchanging' for the first time. Compare the expanded method to the compact column method to develop an understanding of the process and the reduced number of steps involved.

Key vocabulary: add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, sum, tens, ones, partition, plus, addition, column, tens boundary, hundreds boundary. increase, vertical, exchange (carry), expanded, compact

Key skills for addition at Y 3 :

- Read and write numbers to 1000 in numerals and words.
- Add 2-digit numbers mentally, incl. those exceeding 100.
- Add a three-digit number and ones mentally $(175+8)$
- Add a three-digit number and tens mentally $(249+50)$
- Add a three-digit number and hundreds mentally $(381+400)$
- Estimate answers to calculations, using inverse to check answers.
- Solve problems, including missing number problems, using number facts, place value, and more complex addition.
- Recognise place value of each digit in 3-digit numbers (hundreds, tens, ones.)
- Continue to practise a wide range of mental addition strategies, ie. number bonds, adding the nearest multiple of $10,100,1000$ and adjusting, using near doubles, partitioning and recombining.
Video clip: Demonstration of expanded 3-digit column addition

Key vocabulary: add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, sum, tens, ones, partition, plus, addition, column, tens boundary, hundreds boundary, increase, vertical, exchange (carry), expanded, compact, thousands, hundreds, digits, inverse

Key skills for addition at Y4:

- Select most appropriate method: mental, jottings or written and explain why.
- Recognise the place value of each digit in a four-digit number.
- Round any number to the nearest 10,100 or 1000.
- Estimate and use inverse operations to check answers.
- Solve 2-step problems in context, deciding which operations and methods to use and why.
- Find 1000 more or less than a given number.
- Continue to practise a wide range of mental addition strategies, ie. number bonds, add the nearest multiple of $10,100,1000$ and adjust, use near doubles, partitioning and recombining. Add numbers with up to 4 digits using the formal written method of column addition Solve 2-step problems in contexts, deciding which operations and methods to use and why.
- Estimate and use inverse operations to check answers to a calculation.

Year 5 Add numbers with more than 4 digits

including money, measures and decimals with different numbers of decimal places.

The decimal point should be aligned in the same way as the other place value columns, and must remain in the same column in the answer row.

Numbers should exceed 4 digits.

- Understand the place value of tenths and hundredths and use this to align numbers with different numbers of decimal places.

Key vocabulary: add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, sum, tens, ones, partition, plus, addition, column, tens boundary, hundreds boundary, increase, exchange (carry), expanded, compact, vertical, thousands, hundreds, digits, inverse\& decimal places, decimal point, tenths, hundredths, thousandths

Key skills for addition at Y 5 :

- Add numbers mentally with increasingly large numbers, using and practising a range of mental strategies ie. add the nearest multiple of $10,100,1000$ and adjust; use near doubles, inverse, partitioning and re-combining; using number bonds.
Use rounding to check answers and accuracy.
- Solve multi-step problems in contexts, deciding which operations and methods to use and why.
- Read, write, order and compare numbers to at least 1 million and determine the value of each digit.
- Round any number up to $1,000,000$ to the nearest $10,100,1000,10,000$ and 100,000 .
- Add numbers with more than 4 digits using formal written method of columnar addition.

Year 6 Add several numbers of increasing complexity

Adding several numbers with more than 4 digits.

Key vocabulary: add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, sum, tens, ones, partition, plus, addition, column, tens boundary, hundreds boundary, increase, exchange (carry), expanded, compact, vertical, thousands, hundreds, digits, inverse, decimal places, decimal point, tenths, hundredths, thousandths

Key skills for addition at Y6:

- Perform mental calculations, including with mixed operations and large numbers, using and practising a range of mental strategies.
- Solve multi-step problems in context, deciding which operations and methods to use andwhy.
- Use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy.
- Read, write, order and compare numbers up to 10 million and determine the value of each digit.
- Round any whole number to a required degree of accuracy.
- Pupils understand how to add mentally with larger numbers and calculations of increasing complexity.

Mental subtraction

Children should start recalling subtraction facts up to and within 10 and 20, and should be able to subtract zero.

Key vocabulary: equal to, take, take away, less, minus, subtract, leaves, distance between, how many more, how many fewer / less than, most, least, count back, how many left, how much less is_?

Key skills for subtraction at Y 1 :

- Given a number, say one more or one less.
- Count to and over 100, forward and back, from any number.
- Represent and use subtraction facts to 20 and within 20.
- Subtract with one-digit and two-digit numbers to 20 , including zero.
- Solve one-step problems that involve addition and subtraction, using concrete objects (ie bead string, objects, cubes) and pictures, and missing number problems.
- Read and write numbers from 0 to 20 in numerals and words.

Year 2 Subtract with 2-digit numbers

Subtract on a number line by counting back, aiming to develop

Use

Dienes/Numacon
blocks for
subtraction
calculations too.

- 2-digit numbers subtract ones (by taking away / counting back) e.g.36-7
- 2-digit numbers subtract tens (by taking away / counting back) e.g. 48-30
- Subtracting pairs of 2-digit numbers (see below:)

Subtracting pairs of 2-digit numbers on a number line:

47-23 = 24 Partition the second number
and subtract it in tens and ones, as below:
Move towards more efficient jumps back, as below:

Combine methods with use of a hundred square to reinforce understanding of number value and order.

Teaching children to bridge through ten can

help them to become more efficient, for

example 42-25:
$17 \quad 20 \quad 22$
42

Mental strategy-subtract numbers close together by counting on:

Key vocabulary: equal to, take, take away, less, minus, subtract, leaves, distance between, how many more, how many fewer / less than, most, least, count back, how many left, how much less is_? difference, count on, strategy, partition, tens, ones
Key skills for subtraction at Y2:

- Recognise the place value of each digit in a two-digit number.
- Recall and use subtraction facts to 20 fluently, and derive and use related facts up to 100.
- Subtract using concrete objects, pictorial representations, 100 squares and mentally, including: a two- digit number and ones, a two-digit number and tens, and two two-digit numbers.
- Show that subtraction of one number from another cannot be done in any order.
- Recognise and use inverse relationship between addition and subtraction, using this to check calculations and missing number problems.
- Solve simple addition and subtraction problems including measures, using concrete objects, pictorial representation, and also applying their increasing knowledge of mental and written methods.
- Read and write numbers to at least 100 in numerals and inwords.

*STEP 4: If the above is secure a formal short method is introduced (see Year 4 for details)

Counting on as a mental strategy for subtraction:

Continue to reinforce counting on as a strategy for close-together numbers (e.g. 121-118), and also for numbers that are nearly multiples of $10,100,1000$ or $£ s$, which make it easier to count on (e.g. 102-89, 131-79, or calculating change from $£ 1$ etc.).

- Start at the smaller number and count on in tens first, then count on in ones to find the rest of the difference:

Key vocabulary: equal to, take, take away, less, minus, subtract, leaves, distance between, how many more, how many fewer / less than, most, least, count back, how many left, how much less is_? difference, count on, strategy, partition, tens,ones, exchange, decompose (borrow), decrease, hundreds, value, digit
Key skills for subtraction at Y3:

- Subtract mentally a: 3-digit number and ones, 3-digit number and tens, 3-digit number and hundreds .
- Estimate answers and use inverse operations to check.
- Solve problems, including missing number problems.
- Find 10 or 100 more or less than a given number.
- Recognise the place value of each digit in a 3-digit number.
founting up differences as a mental strategy when numbers are close together or near multi- ples of

Approximate,
Calculate,
Check it! 0 (see examples above)

- Read and write numbers up to 1000 in numerals and words.
- Practise mental subtraction strategies, such as subtracting near multiples of 10 and adjusting (e.g. subtracting 19 or 21), and select most appropriate methods to subtract, explaining why.

Year 4 Subtract with up to 4-digit numbers

Partitioned column subtraction with 'decomposition':

To introduce the compact method, ask children to perform a subtraction calculation with the familiar partitioned column subtraction then display the compact version for the calculation they have done. Ask pupils to consider how it relates to the method they know, what is similar and what is different, to develop an understanding of it.

Always encourage children to consider the best method for the numbers involvedmental, counting on, counting back or written method.

Mental strategies

路

A variety of mental strategies must be taught and practised, including counting on to find the difference where numbers are closer together, or where it is easier to count on.

Approximate,
Calculate, Check it mate!

Key vocabulary: equal to, take, take away, less, minus, subtract, leaves, distance between, how many more, how many fewer / less than, most, least, count back, how many left, how much less is_? difference, count on, strategy, partition, tens, ones, exchange, decompose (borrow), decrease, hundreds, value, digit, inverse

Key skills for subtraction at y4:

- Subtract by counting on where numbers are close together or they are near to multiples of 10,100 etc.
- Children select the most appropriate and efficient methods for given subtraction calculations.
- Estimate and use inverse operations to check answers.
- Solve addition and subtraction 2-step problems, choosing which operations and methods to use and why.
- Solve simple measure and money problems involving fractions and decimals to two decimal places.
- Find 1000 more or less than a given number.
- Count backwards through zero, including negative numbers.
- Recognise place value of each digit in a 4-digit number Round any number to the nearest 10,100 or 1000
- Solve number and practical problems that involve the above, with increasingly large positive numbers.

exchange, decompose (borrow), decrease, hundreds, value, digit, inverse, tenths, hundredths, decima point, decimal

Key skills for subtraction at Y 5 :

- Subtract numbers mentally with increasingly large numbers.
- Use rounding and estimation to check answers to calculations and determine, in a range of contexts, levels of accuracy.
- Solve addition and subtraction multi-step problems in context, deciding which operations and methods to use and why.
- Read, write, order and compare numbers to at least 1 million and determine the value of each digit.
- Count forwards or backwards in steps of powers of 10 for any given number up to 1 million.
- Interpret negative numbers in context, counting forwards and backwards with positive and negative integers through zero.
- Round any number up to 1 million to the nearest $10,100,1000,10,000$ and 100,000 .

Pupils should be able to apply their knowledge of a range of mental strategies, mental recall skills, and informal and formal written methods when selecting the most appropriate method to work out subtraction problems.

Key vocabulary: equal to, take, take away, less, minus, subtract, leaves, distance between, how many more, how many fewer / less than, most, least, count

back, how manyleft, how much less is_? difference, count on, strategy, partition, tens, ones, exchange, decompose (borrow), decrease, hundreds, value, digit, inverse, tenths, hundredths, decimal point, decima
Key skills for subtraction at Y6:

- Solve addition and subtraction multi-step problems in context, deciding which operations and methods to use and why.
- Read, write, order and compare numbers up to 10 million and determine the value of each digit
- Round any whole number to a required degree of accuracy
- Use negative numbers in context, and calculate intervals
- across zero.
- Children need to utilise and consider a range of mental subtraction strategies, jottings and written methods before choosing how to calculate.

Year 1 Multiply with concrete objects, arrays and pictorial representations.

How many legs will 3 teddies have?

There are 3 sweets in one bag. How many sweets are in 5 bags altogether?

- Give children experience of counting equal group of objects in $2 s$, $5 s$ and $10 s$.
- Present practical problem solving activities involving counting equal sets or groups, as above.

Key vocabulary: groups of, lots of, times, array, altogether, multiply, count
Key skills for multiplication at Y 1 :

- Count in multiples of 2,5 and 10.
- Solve one-step problems involving multiplication, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.
- Make connections between arrays, number patterns, and counting in twos, fives and tens. Begin to understand doubling using concrete objects and pictorial representations.

Year 2 Multiply using arrays and repeated addition

(using at least 2s, 5s and 10s)

Use repeated addition on a number line:

- Starting from zero, make equal jumps up on a number line to work out multiplication facts and write multiplication statements using x and $=$ signs.

$4 \times 5=20$
Use arrays:

$3 \times 5=15$

Use arrays to help teach children to understand the commutative law of multiplication, and give examples such as $3 \times$ \qquad $=6$.

Use practical apparatus:

$$
5 \times 3=5+5+5
$$

$$
5 \times 3=15
$$

$5 \times 3=3+3+3+3=\underline{15}$
$3 \times 5=5+5+5=\underline{15}$

Use mental recall:

- Children should begin to recall multiplication facts for 2,5 and 10 times tables through practice in counting and understanding of theoperation.

Key vocabulary: groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, column, row, commutative, sets of, equal groups, times as bigas, once, twice, three times...
Key skills for multiplication at Y2:

- Count in steps of 2, 3 and 5 from zero, and in 10 s from any number.
- Recall and use multiplication facts from the 2,5 and 10 multiplication tables, including recognising odds and evens.
Write and calculate number statements using the x and $=$ signs.
- Show that multiplication can be done in any order (commutative).
- Solve a range of problems involving multiplication, using concrete objects, arrays, repeated addition, mental methods, and multiplication facts.
Pupils use a variety of language to discuss and describe multiplication.

Year 3 Multiply 2-digits by a single digit number

Introduce the grid method for multiplying 2-digit by single-digits:
Eg. $\quad 23 \times 8=184$
Link the layout of the grid to an array initially:

X	20	3
8	160	24

$$
160+24=184
$$

Introduce the grid method with children physically making an array to represent the calculation (e.g. make 8 lots of 23 with 10s and 1s place value counters), then translate this to grid method format.

To do this, children must be able to:

- Partition numbers into tens and ones
- Multiply multiples of ten by a single digit (e.g. 20×4) using their knowledge of multiplication facts and place value
- Recall and work out multiplication facts in the 2, 3, 4, 5, 8 and 10 timestables.
- Work out multiplication facts not known by repeated addition or other taught mental strategies (e.g. by commutative law, working out near multiples and adjusting, using doubling etc.) Strategies to support this are repeated addition using a number line, bead bars and arrays:

$9 \times 4=36$

6
$000000-00000-000000-000000$
Key vocabulary: groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, column, row, commutative, sets of, equal groups, times, _times as big as, once, twice, three times..., partition, grid method, multiple, product, tens, ones, value

Key skills for multiplication:

- Recall and use multiplication facts for the 2, 3, 4, 5, 8 and 10 multiplication tables, and multiply multiples of 10 .
- Write and calculate number statements using the multiplication tables they know, including 2-digit x single digit, drawing upon mental methods, and progressing to reliable written methods.
- Solve multiplication problems, including missing number problems.
- Develop mental strategies using commutativity (e.g. $4 \times 12 \times 5=4 \times 5 \times 12=20 \times 12=240$)
- Solve simple problems in contexts, deciding which operations and methods to use.
- Develop efficient mental methods to solve a range of problems e.g using commutativity ($4 \times 12 \times 5=4 \times$ $5 \times 12=20 \times 12=240$) and for missing number problems

Year 4 Multiply 2 and 3-digits by a single digit, using

all multiplication tables up to 12×12

Developing the grid method:

$$
\text { Eg: } 136 \times 5=680
$$

X	100	30	6
5	500	150	30

$+\quad 30$

680

Move onto short multiplication (see Y_{5}) if and when children are confident and accurate multiplying 2 and 3 -digit numbers by a single digit this way, and are already confident in exchanging (carrying) for written addition.

Children should be able to:

- Estimate before they calculate, and make this a regular part of their calculating, going back to the estimation to check the reasonableness of their answer.e.g:
-346×9 is approximately $350 \times 10=3500$
Record an estimate to check the final answer against.
- Multiply multiples of ten and one hundred by a single-digit, using their multiplication table knowledge.
- Recall all times tables up to 12×12

Key vocabulary: groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, array, column, row, commutative, groups of, sets of, lots of, equal groups, times, multiply, times as bigas, once, twice, three times... partition, grid method, total, multiple, product, sets of, inverse, estimate

Key skills for multiplication at Y4:

- Count in multiples of 6,7, 9, 25 and 1000
- Recall multiplication facts for all multiplication tables up to 12×12.
- Recognise place value of digits in up to 4-digit numbers
- Use place value, known facts and derived facts to multiply mentally, e.g. multiply by $1,10,100$, by 0 , or to multiply 3 numbers.
- Use commutativity and other strategies mentally $3 \times 6=6 \times 3,2 \times 6 \times 5=10 \times 6,39 \times 7=30 \times 7+9 \times 7$.
- Solve problems with increasingly complex multiplication in a range of contexts.
- Count in multiples of $6,7,9,25$ and 1000
- Recognise the place value of each digit in a four-digit number (thousands, hundreds, tens, and ones)

Key vocabulary groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, column, row, commutative, sets of, equal groups,_times as bigas, once, twice, three times..., partition, grid method, total, multiple, product, inverse, square, factor, integer, decimal, short/long multiplication, exchange (carry)

Key skills for multiplication at Y 5 :

- Identify multiples and factors, using knowledge of multiplication tables to 12×12.
- Solve problems where larger numbers are decomposed into their factors
- Multiply and divide integers and decimals by 10,100 and 1000
- Recognise and use square and cube numbers and their notation
- Solve problems involving combinations of operations, choosing and using calculations and methods appropriately.

Year 6 Short and long multiplication as in Y 5 , and multiply decimals with up to 2d.p by a single digit.

Children will be able to:

- Use rounding and place value to make estimations before calculating and use these to check answers against.
- Use short multiplication (see Y 5) to multiply numbers with more than 4-digits by a single digit; to multiply money and measures, and to multiply decimals with up to 2d.p. by a single digit.
- Use long multiplication (see Y 5) to multiply numbers with at least 4 digits by a 2-digit number.

Estimate,
Calculate,
Check it mate!

Key vocabulary: groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, array, column, row, commutative, sets of, equal groups, times as big as, once, twice, three times... partition, grid method, total, multiple, product, inverse, square, factor, integer, decimal, short / long multiplication, exchange (carry), tenths, hundredths, decimal

Key skills for multiplication at Y6:

- Recall multiplication facts for all times tables up to 12×12 (as Y4 and Y5).
- Multiply multi-digit numbers, up to 4-digit $\times 2$-digit using long multiplication.
- Perform mental calculations with mixed operations and large numbers.
- Solve multi-step problems in a range of contexts, choosing appropriate combinations of operations and methods.
- Estimate answers using round and approximation and determine levels of accuracy.
- Round any integer to a required degree of accuracy.

- use lots of practical apparatus, arrays and picture representations
- Be taught to understand the difference between grouping objects (How many groups of 2 can you make?) and sharing (Share these sweets between 2 people)
- Be able to count in multiples of $2 s, 5 s$ and $10 s$.
- Find half of a group of objects by sharing into 2 equal groups.

Key Vocabulary: share, share equally, one each, two each..., group, groups of, lots of, array
Key number skills needed for division at Y 1 :

- Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations arrays with the support of the teacher
Through grouping and sharing small quantities, pupils begin to understand, division, and finding simple fractions of objects, numbers and quantities.
- They make connections between arrays, number patterns, and counting in twos, fives and tens.

Pose $12 \div 3$ as. How many groups of 3 are in 12?

Key Vocabulary: share, share equally, one each, two each..., group, equal groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over Key number skills needed for division at Y2:

- Count in steps of 2,3, and 5 from 0
- Recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers.
- Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the x, \div and $=$ signs.
Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot.
- Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts.

Real life contexts need to be used routinely to help pupils gain a full understanding, and the ability to recognise the place of division and how to apply it to
problems.

Short division: Limit numbers to
NO remainders in the final answer, but with remainders occurring within

Abstract

STEP 1: Children continue to work out unknown division facts by grouping on a number line from zero. They are also now taught the concept of remainders, as in the example. This should be introduced practically and with arrays, as well as being translated to a number line. Children should work towards calculating some basic division facts with remainders mentally for the $2 s, 3 s, 4 s, 5 s, 8 s$ and $10 s$, ready for 'carrying' remainders across within the short division method.

STEP 2: Once children are secure with division as grouping and

Short division: Limit numbers to
NO remainders in the answer OR carried (each digit must be a multiple of the divisor).
 demonstrate this using number lines, arrays etc., short division for larger 2-digit numbers should be introduced, initially with carefully selected examples requiring no calculating of remainders at all. Start by introducing the layout of short 8 division by comparing it to an array. \qquad 56 Remind children of correct place value, that 96 is equal to 90 and 6, but in short division, pose:

- How many $3 s$ in $9 ?=3$, and record it above the 9 tens. - How many $3 s$ in 6 ? $=2$, and record it above the 6 units. remainders, and also the short division method taught, they can be taught how to use the method when remainders occur within the calculation (96 divided by 4), and be taught to carry the remainder onto the next digit. If needed, children should use the number line to work out individual division facts that occur which they are not yet able to recall mentally.

Step 3 Only taught when pupils can calculate remainders.
Key Vocabulary: share, share equally, one each, two each..., group, equal groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over, inverse, short division, carry, remainder, multiple

Key number skills needed for division at Y3:

- Recall and use multiplication and division facts for the $2,3,4,5,8$ and 10 multiplication tables (through doubling, connect the 2, 4 and 8s).
- Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods.
- Solve problems, in contexts, and including missing number problems, involving multiplication and division.
- Pupils develop efficient mental methods, for example, using multiplication and division facts (e.g. using 3×2 $=6,6 \div 3=2$ and $2=6 \div 3$) to derive related facts ($30 \times 2=60$, so $60 \div 3=20$ and $20=60 \div 3$).
- Pupils develop reliable written methods for division, starting with calculations of 2 -digit numbers by 1 -digit numbers and progressing to the formal written method of short division.

Key Vocabulary: share, share equally, one each, two each..., group, equal groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over, inverse, short division, carry, remainder, multiple, divisible by, factor

Key number skills needed for division at Y4:

- Recall multiplication and division facts for all numbers up to 12×12.
- Use place value, known and derived facts to multiply and divide mentally, including: multiplying and dividing by 10 and 100 and 1 .
- Pupils practise to become fluent in the formal written method of short division with exact answers when dividing by a one-digit number
Pupils practise mental methods and extend this to three-digit numbers to derive facts, for example 200 $\times 3=600$ so $600 \div 3=200$
- Pupils solve two-step problems in contexts, choosing the appropriate operation, working with increasingly harder numbers. This should include correspondence questions such as three cakes shared equally between 10 children.

Year 5 Divide up to 4 digits by a single digit, including

 those with remainders.
Short division, including remainder answers:

Short division with remainders: Now that pupils are introduced to examples that give rise to remainder answers, division needs to have a real life problem solving context, where pupils consider the meaning of the remainder and how to express it, ie. as a fraction, a decimal, or as a rounded number or value, depending upon the context of the problem.

Key Vocabulary: share, share equally, one each, two each..., group, equal groups of, lots of, array, divide, divided by, divided into, division, grouping, numberline, left, leftover, inverse, short division, carry, remainder, multiple, divisible by, factor, inverse, quotient, prime number, prime factors, composite number (non-prime)

Key number skills needed for division at Y 5 :

- Recall multiplication and division facts for all numbers up to 12×12 (as in Y4).
- Multiply and divide numbers mentally, drawing upon known facts.
- Identify multiples and factors, including finding all factor pairs of a number, and common factors of two number.
- Solve problems involving multiplication and division where larger numbers are decomposed into their factors.
- Multiply and divide whole numbers and those involving decimals by 10,100 and 1000.
- Use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers.
- Work out whether a number up to 100 is prime, and recall prime numbers to 19.
- Divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context
- Use multiplication and division as inverses.
- Interpret non-integer answers to division by expressing results in different ways according to the context, including with remainders, as fractions, as decimals or by rounding (e.g. $98 \div 4=24 \mathrm{r} 2=241 / 2$ $=24.5 \approx 25$).
- Solve problems involving combinations of all four operations, including understanding of the equals sign, and including division for scaling by different fractions and problems involving simple rates.

Year 6 Divide at least 4 digits by both single-digit and

2-digit numbers (including decimal numbers and quantities)

Short division, for dividing by a single digit: e.g. $6497 \div 8$
Short division with remainders: Pupils should continue to use this method, but with numbers to at least 4 digits, and understand how to express remainders as fractions, decimals, whole number remainders, or rounded numbers. Real life problem solving contexts need to be the starting point, where pupils have to consider the most appropriate way to express the remainder.

Calculating a decimal remainder: In this example, rather than expressing the remainder as $\underline{r} \mathbf{1}$, a decimal point is added after the units because there is still a remainder, and the one remainder is carried onto zeros after the decimal point (to show there was no decimal value in the original number). Keep dividing to an appropriate degree of accuracy for the problem being solved

2. Long Division using the long form of the 'Bus Stop'

This can be tricky and takes a long time to fully master. See next page for a step by step break down of the method.

11) What is 5×13 ? 65 . Write the 65 below the 70 and subrtract it. Write the answer 5 underneath the ' 5 '.	12) Bring down the next ' O ' and write it next to the ' 5 '
13) How many groups of 13 are in 50 ? 3. Write the ' 3 ' above the ' 0 ' on the answer line. $\left(\begin{array}{rr} 13)^{4625} 4.09 \\ (3 \times 13=39) & -\frac{397}{72} \\ (5 \times 13=65) & -\frac{65}{70} \\ (5 \times 13=65) & -\frac{65}{50} \end{array}\right.$	14) What is 3×13 ? 39. Write ' 39 ' below the ' 50 ' and subtract it, Write the answer ' 11 ' underneath the ' 5 '. $\begin{array}{lr} & \begin{array}{r} 035.53 \\ (3 \times 13=39) \end{array} \\ & -\frac{39}{72} \\ (5 \times 13=65) & -\frac{65}{76}{ }^{2} \\ & -\frac{65}{50} \\ (5 \times 13=65) & -\frac{39}{11} \\ & (3 \times 13=39) \end{array}$
15) Now there are two decimal places in the answer, you can stop working!	
1) Set out the numbers for the calculation (divisor on the left) and put in a decimal point and two 'O's $1 3 \longdiv { 4 6 2 . 0 0 }$	2) How many groups of 13 are in 4? None. Write a '0' above the 4. 3) How many Groups of 13 are in 46? 3. Write a ' 3 ' above the ' 6 ' $1 3 \longdiv { 4 6 2 . 0 0 }$
4) What is 3×13 ? 39 . Write this ' 3 ' 9 underneath the ' 46 ' and subtract it. Write the answer '7' underneath the ' 9 ' $\frac{03}{13 \int_{(3 \times 13=39)}^{\frac{462.00}{4}}}$	5) Bring down the ' 2 ' and write it next to the ' 7 ' $\begin{gathered} \frac{03}{13 \lcm{462} 0.00} \\ \frac{391}{72} \end{gathered}$
6) How many groups of 13 are there in 72 ? 5. Write the ' 5 above ' 2 ' on the answer line $\begin{aligned} & 1 3 \longdiv { 4 6 2 . 0 0 } \\ & (3 \times 13=39) \frac{391}{12} \end{aligned}$	7) What is 5×13 ? 65 . Write ' 65 ' below the ' 72 ' and subtract it, Write the answer ' 7 ' underneath the ' 5 '. $\begin{gathered} 1 3 \longdiv { 4 6 2 . 0 0 } \\ (3 \times 13=39) \begin{array}{l} -\frac{391}{72} \\ (5 \times 13=65) \\ -\frac{65}{7} \end{array} \end{gathered}$
8) Put the decimal point into the answer line. 9) Bring down the ' O ' and write it next to the ' 7 '	10) How many groups of 13 are in 70? 5. Write the ' 5 ' on the answer line above the ' O ' $\begin{array}{r} 035.5 \\ (3 \times 13=39)-\frac{13)^{462}}{460} \\ (5 \times 13=65) \\ \left(-\frac{65}{7} 0_{0}^{7}\right. \end{array}$

Key Vocabulary: As previously, \& common factor

Key number skills needed for division at Y6:

- Recall and use multiplication and division facts for all numbers to 12×12 for more complex calculations
- Divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context. Use short division whereappropriate.
- Perform mental calculations, including with mixed operations and large numbers.
- Identify common factors, common multiples and prime numbers.
- \quad Solve problems involving all 4 operations.
- Use estimation to check answers to calculations and determine accuracy, in the context of a problem.
- Use written division methods in cases where the answer has up to two decimal places.
- Solve problems which require answers to be rounded to specified degrees of accuracy.

