Area and Perimeter

Use what you already know and what we have already covered.
Remember to check the units of measurement and convert where necessary.

Match the rectangle to the correct area and perimeter.

Not to scale

Match the rectangle to the correct area and perimeter.

Not to scale

Varied Fluency 1

The area of this shape is $112 \mathrm{~cm}^{2}$. Work out the missing width.

Not to scale

Varied Fluency 1

The area of this shape is $112 \mathrm{~cm}^{2}$. Work out the missing width.

130 mm

Not to scale

Varied Fluency 2

Solve the word problem.

A room measures 16 ft by 6 ft . What is the area of the room?

Use the formula $a=w \times l$ to write your answer.

Varied Fluency 2

Solve the word problem.

A room measures 16 ft by 6 ft . What is the area of the room?

Use the formula $a=w \times l$ to write your answer.

Area $=16 \mathrm{ft} \times 6 \mathrm{ft}=96 \mathrm{ft}^{2}$

Varied Fluency 3

Using the correct formulae, calculate the area and the perimeter of the shapes below.

80 mm

Using the correct formulae, calculate the area and the perimeter of the shapes below.

A. Area $=9 m \times 5 m=\underline{45 m^{2}}$, Perimeter $=9 m+9 m+5 m+5 m=\underline{28 m}$
B. Area $=14 \mathrm{~cm} \times 8 \mathrm{~cm}=112 \mathrm{~cm}^{2}$, Perimeter $=14 \mathrm{~cm}+14 \mathrm{~cm}+8 \mathrm{~cm}+$ $8 \mathrm{~cm}=44 \mathrm{~cm}$

Not to scale

Varied Fluency 4

Which shape has an area and a perimeter that equal the same number?

Which shape has an area and a perimeter that equal the same number?

Not to scale

Problem Solving 1

Drew draws two equal rectangles.

He puts them together to make a new shape.

Using the correct formulae, find the area and perimeter of the new shape.

Problem Solving 1

Drew draws two equal rectangles.

He puts them together to make a new shape.

Using the correct formulae, find the area and perimeter of the new shape.

$$
\begin{gathered}
\text { Area }=57 \mathrm{~cm}^{2} \\
\text { Perimeter }=44 \mathrm{~cm} \\
\text { Not to scale }
\end{gathered}
$$

Problem Solving 2

A shape has a perimeter of 54 cm .

What is the largest area the shape could have?
What is the smallest area the shape could have?

Not to scale

Problem Solving 2

A shape has a perimeter of 54 cm .

What is the largest area the shape could have?
$13 \mathrm{~cm} \times 14 \mathrm{~cm}=182 \mathrm{~cm}^{2}$
What is the smallest area the shape could have?
$26 \mathrm{~cm} \times 1 \mathrm{~cm}=26 \mathrm{~cm}^{2}$

Reasoning 1

Milly says,

Do you agree? Prove it.

Reasoning 1

Milly says,

Do you agree? Prove it.
Milly is incorrect because...

Reasoning 1

Milly says,

Do you agree? Prove it.
Milly is incorrect because area is calculated using the formula $a=l \times w$, and perimeter is calculated using the formula $p=2 l+2 w$.

