Reasoning and Problem Solving Step 6: Area of a Parallelogram

National Curriculum Objectives:

Mathematics Year 6: (6M7b) Calculate the area of parallelograms and triangles Mathematics Year 6: (6M7c) Recognise when it is possible to use formulae for the area of shapes

Differentiation:

Questions 1, 4 and 7 (Reasoning)
Developing Use knowledge of area to explain whether the given area of a parallelogram is correct. Use of the formula: base x perpendicular height. Whole numbers only.
Expected Use knowledge of area to explain whether the given area of a parallelogram is correct. Use of the formula: base x perpendicular height. Includes some conversions (mm to cm) and some decimals (halves only). Children to select the base and perpendicular height from given measurements.
Greater Depth Use knowledge of area to explain whether the given area of a parallelogram is correct. Use of the formula: base x perpendicular height. Includes some conversions (mm to cm, cm to m and mm to m) and some decimals (halves and tenths). Children to select the base and perpendicular height from given measurements.

Questions 2, 5 and 8 (Problem Solving)
Developing Find the number of parallelograms needed to cover a given area.
Differentiation as described for Question 1.
Expected Find the number of parallelograms needed to cover a given area. Differentiation as described for Question 1.
Greater Depth Find the number of parallelograms needed to cover a given area. Differentiation as described for Question 1.

Questions 3, 6 and 9 (Reasoning)
Developing Explain whether the statement is correct. Differentiation as described for Question 1.
Expected Explain whether the statement is correct. Differentiation as described for Question 1.
Greater Depth Explain whether the statement is correct. Differentiation as described for Question 1.

More Year 6 Perimeter, Area and Volume resources.

Did you like this resource? Don't forget to review it on our website.

1a. Keon says that half the area of the parallelogram below is $24 \mathrm{~cm}^{2}$.

6 cm

Use the formula base x perpendicular height to prove whether Keon is correct.

1b. Joslyn says that half the area of the parallelogram below is $20 \mathrm{~cm}^{2}$.

Use the formula base x perpendicular height to prove whether Joslyn is correct.

Not to scale

2a. Connor is tiling part of a swimming pool. The tiles are parallelograms.

The area he wants to cover is $400 \mathrm{~cm} x$ 200 cm .

The area needs to be completely covered.
How many tiles will he need?
Show your working.

3a. Sanaa has drawn a parallelogram.
She says,

Not to scale

2b. Larry is covering part of a floor with tiles. The tiles are parallelograms.

The area he wants to cover is $300 \mathrm{~cm} x$ 200 cm .

The area needs to be completely covered. How many tiles will he need?

Show your working.

Not to scale
3b. Kale has drawn a parallelogram.
He says,

Is he correct? Explain your answer.

Is she correct? Explain your answer.
Not to scale

4a. Daniel says that half the area of the parallelogram below is $60 \mathrm{~cm}^{2}$.

120 mm

Use the formula base x perpendicular height to prove whether Daniel is correct.

Not to scale
5a. Clive is paving part of his garden. The paving stones are parallelograms.

The area he wants to cover is $400 \mathrm{~cm} x$ 150 cm .

The area needs to be completely covered. How many paving stones will he need?

Show your working.
6a. Jenni has drawn a parallelogram.

She says,
The area of my parallelogram is $60 \mathrm{~cm}^{2}$ and the base is 240 mm , so the perpendicular height must be 2 cm .

Is she correct? Explain your answer.

4b. Julia says that half the area of the parallelogram below is $36 \mathrm{~mm}^{2}$.

Use the formula base x perpendicular height to prove whether Julia is correct.

Not to scale
5b. Frazer is tiling part of a bathroom. The tiles are parallelograms.

The area he wants to cover is $500 \mathrm{~cm} x$ 250 cm .

The area needs to be completely covered. How many tiles will he need?

Show your working.

Not to scale
6b. Silas has drawn a parallelogram.
He says,

Is he correct? Explain your answer.

7a. Judah says that half the area of the parallelogram below is $46 \mathrm{~m}^{2}$.

$15,000 \mathrm{~mm}$

Use the formula base x perpendicular height to prove whether Judah is correct.

7b. Miley says that half the area of the parallelogram below is $56 \mathrm{~m}^{2}$.

25,000mm

Use the formula base x perpendicular height to prove whether Miley is correct.

8a. Ivy is creating part of a patchwork quilt. The patches are parallelograms.

The area she wants to cover is 8 mx 0.13 m .

The area needs to be completely covered. How many patches will she need?

Show your working.

Show your working.
Not to scale
9b. Kylo has drawn a parallelogram.
He says,
The area of my parallelogram is $75 \mathrm{~cm}^{2}$ and the base is 0.15 m , so the perpendicular height must be 500 mm .

PS

Reasoning and Problem Solving

Area of a Parallelogram

Reasoning and Problem Solving

 Area of a Parallelogram
Developing

1a. No; the area of the parallelogram is $6 \mathrm{~cm} \times 4 \mathrm{~cm}=24 \mathrm{~cm}^{2}$, so half the area of the parallelogram is $24 \mathrm{~cm}^{2} \div 2=12 \mathrm{~cm}^{2}$, not $24 \mathrm{~cm}^{2}$.
2a. 4,000 tiles; the area of each tile is $20 \mathrm{~cm}^{2}$ ($5 \mathrm{~cm} \times 4 \mathrm{~cm}$) and the area of the pool he wants to tile is $80,000 \mathrm{~cm}^{2}(400 \mathrm{~cm} \times 200 \mathrm{~cm})$. $80,000 \mathrm{~cm}^{2} \div 20 \mathrm{~cm}^{2}=4,000$.
3 a . No; $21 \mathrm{~cm}^{2} \div 7 \mathrm{~cm}=3 \mathrm{~cm}$, not 2 cm .

Expected

4a. No; the area of the parallelogram is $12 \mathrm{~cm} \times 5.5 \mathrm{~cm}=66 \mathrm{~cm}^{2}$, so half the area of the parallelogram is $66 \mathrm{~cm}^{2} \div 2=33 \mathrm{~cm}^{2}$, not $60 \mathrm{~cm}^{2}$.
$5 a .400$ paving stones; the area of each stone is $150 \mathrm{~cm}^{2}(15 \mathrm{~cm} \times 10 \mathrm{~cm})$ and the area of the garden he wants to cover is $60,000 \mathrm{~cm}^{2}$ ($400 \mathrm{~cm} \times 150 \mathrm{~cm}$). $60,000 \mathrm{~cm}^{2} \div$ $150 \mathrm{~cm}^{2}=400$.
6 a . No; $60 \mathrm{~cm}^{2} \div 24 \mathrm{~cm}=2.5 \mathrm{~cm}$, not 2 cm .

Greater Depth

7a. No; the area of the parallelogram is $15 \mathrm{~m} \times 6.2 \mathrm{~m}=93 \mathrm{~m}^{2}$, so half the area of the parallelogram is $93 \mathrm{~m}^{2} \div 2=46.5 \mathrm{~m}^{2}$, not $46 \mathrm{~m}^{2}$.
8 a. 200 patches; the area of each patch is $52 \mathrm{~cm}^{2}(8 \mathrm{~cm} \times 6.5 \mathrm{~m})$ and the area of the quilt she is creating is $10,400 \mathrm{~cm}^{2}(800 \mathrm{~cm} \mathrm{x}$ $13 \mathrm{~cm}) .10,400 \mathrm{~cm}^{2} \div 52 \mathrm{~cm}^{2}=200$.
9a. No; $75 \mathrm{~cm} \div 15 \mathrm{~cm}=5 \mathrm{~cm}$ (which is 50 mm , not 500 mm).

Developing

1b. Yes; the area of the parallelogram is $8 \mathrm{~cm} \times 5 \mathrm{~cm}=40 \mathrm{~cm}^{2}$, so half the area of the parallelogram is $40 \mathrm{~cm}^{2} \div 2=20 \mathrm{~cm}^{2}$.
2b. 2,000 tiles; the area of each tile is $30 \mathrm{~cm}^{2}$ $(6 \mathrm{~cm} \times 5 \mathrm{~cm})$ and the area of the floor he wants to cover is $60,000 \mathrm{~cm}^{2}(300 \mathrm{~cm} x$ 200 cm). $60,000 \mathrm{~cm}^{2} \div 30 \mathrm{~cm}^{2}=2,000$.
$3 b$. Yes; $36 \mathrm{~cm}^{2} \div 6 \mathrm{~cm}=6 \mathrm{~cm}$.

Expected

4b. No; the area of the parallelogram is $16 \mathrm{~cm} \times 0.45 \mathrm{~cm}=72 \mathrm{~cm}^{2}$, so half the area of the parallelogram is $72 \mathrm{~cm}^{2} \div 2=36 \mathrm{~cm}^{2}$, not $36 \mathrm{~mm}^{2}$.
5b. 250 tiles; the area of each tile is $500 \mathrm{~cm}^{2}$ ($25 \mathrm{~cm} \times 20 \mathrm{~cm}$) and the area of the bathroom he wants to tile is $125,000 \mathrm{~cm}^{2}$ $(500 \mathrm{~cm} \times 250 \mathrm{~cm}) \cdot 125,000 \mathrm{~cm}^{2} \div 500 \mathrm{~cm}^{2}=$ 250.

6b. No; $55 \mathrm{~cm}^{2} \div 10 \mathrm{~cm}=5.5 \mathrm{~cm}$, not 5 cm .

Greater Depth

7b. Yes; the area of the parallelogram is $25 \mathrm{~m} \times 4.4 \mathrm{~m}=110 \mathrm{~m}^{2}$, so half the area of the parallelogram is $110 \mathrm{~m}^{2} \div 2=55 \mathrm{~m}^{2}$.
8 bb .200 paving stones; the area of each stone is $40.5 \mathrm{~cm}^{2}(9 \mathrm{~cm} \times 4.5 \mathrm{~cm})$ and the area of the path he wants to cover is
$8,100 \mathrm{~cm}^{2}(90 \mathrm{~cm} \times 90 \mathrm{~cm})$.
$8,100 \mathrm{~cm}^{2} \div 40.5 \mathrm{~cm}^{2}=200$.
9b. No; $77 \mathrm{~cm}^{2} \div 22 \mathrm{~cm}=3.5 \mathrm{~cm}$ (which is 35 mm , not 30 mm).

