Area of Compound Shapes

Monday 27th April 2020

As part of your maths today, please complete Times tables grid 2.

L.O. To calculate the area of compound shapes
1. To explain perimeter and area
2. To identify how to split a compound shape into 2 separate shapes
3. Calculate the area of the shapes - individually and as a total
4. Explain answers
5. Solve problems

Remind yourself of the work you did last week on perimeter and area.
Then, work through the slides.
Today is all about calculating the area of compound shapes - when two (or more) shapes have been put together.
Always look to see how the shape can easily be broken down into rectangles and/or squares.
You then just need to use what you already know to calculate the areas of the individual shapes, then add the values together.

There are answers following each slide.
When you have worked through this, there are VF and RPS sheets to have a go at - remember to choose D, E or GD, as you would in class to complete and either the A or B side of each sheet.
Always do VF before RPS.
There are answers at the end of the document for when you finish.

Match the rectangle to the area.

Match the rectangle to the area.

Varied Fluency 1

Find the area of the shapes. Which shape has the larger area?

Find the area of the shapes. Which shape has the larger area?

$A=72 \mathrm{~cm}^{2} ; B=44 \mathrm{~cm}^{2}$, so A has the larger area.

The side of each square measures $2 m$. What is the area of the shape in cm^{2} ?

The side of each square measures $2 m$. What is the area of the shape in cm^{2} ?

$280 \mathrm{~cm}^{2}$

Not to scale

Varied Fluency 3

Complete the compound shape below so that is has an area of $64 \mathrm{~cm}^{2}$. The side of each square equals 20 mm .

Complete the compound shape below so that is has an area of $64 \mathrm{~cm}^{2}$. The side of each square equals 20 mm .

Any compound shape with an area of $64 \mathrm{~cm}^{2}$. There should be 16 squares within the shape.

Problem Solving 1

Each square has an area of $9 \mathrm{~mm}^{\mathbf{2}}$.

Draw 3 different compound shapes that have an area of $36 \mathrm{~mm}^{2}$.

Problem Solving 1

Each square has an area of $9 \mathrm{~mm}^{\mathbf{2}}$.

Draw 3 different compound shapes that have an area of $36 \mathrm{~mm}^{2}$.

Various answers, example above. Accept any compound shape with an area of $36 \mathrm{~mm}^{2}$ (4 squares).

Problem Solving 2

Add the missing lengths to make the following statement correct.

Problem Solving 2

Add the missing lengths to make the following statement correct.

80 mm
A has an area of $18 \mathrm{~cm}^{2}$ and B has an area of $18 \mathrm{~cm}^{2}$.

Various answers, for example:
$A=2 \mathrm{~cm} \times 9 \mathrm{~cm}=18 \mathrm{~cm}^{2} ; B=6 \mathrm{~cm} \times 3 \mathrm{~cm}=18 \mathrm{~cm}^{2}$
Not to scale

Reasoning 1

Layla thinks the area of the shape is $220 \mathrm{~cm}^{2}$. Is she correct? Explain why.

Reasoning 1

Layla thinks the area of the shape is $220 \mathrm{~cm}^{2}$. Is she correct? Explain why.

Layla is incorrect because...

Reasoning 1

Layla thinks the area of the shape is $220 \mathrm{~cm}^{2}$. Is she correct? Explain why.

Layla is incorrect because $7 \mathrm{~cm} \times 1 \mathrm{~cm}=7 \mathrm{~cm}^{2} ; 6 \mathrm{~cm} \times 2.5 \mathrm{~cm}=15 \mathrm{~cm}^{2}$ and $7 \mathrm{~cm}^{2}+15 \mathrm{~cm}^{2}=22 \mathrm{~cm}^{2}$. Layla has not converted from mm to cm.

